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chaotic system!. @S1063-651X~96!06207-1#
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I. INTRODUCTION

The recently gained increase of understanding of classical
Hamiltonian systems@1#, which are nonintegrable and there-
fore display chaotic dynamical behavior, has led to the natu-
ral question: what is the universality of the quantum proper-
ties of such systems? During the past 15 years or so, studies
have focused largely on the statistical properties of energy
levels @2–5# and wave functions@2,6,7# of such systems. It
has been shown that for systems whose classical dynamics is
chaotic, the statistical fluctuations of energy spectra and
wave functions are generally well described by the random
matrix theory. Also, it was discovered that when such sys-
tems are allowed to depend on a parameter, the correlation
between spectra belonging to different values of the param-
eter become universal upon an appropriate scaling of the
parameter~see, for example, Ref.@5#!. Interestingly, Muc-
ciolo et al. @6# have recently proposed a universal scaling for
all three Dyson ensembles, and Alhassid and Attias@7# have
even established the universality of parametric correlation of
eigenfunctions in chaotic and weakly disorder systems.
Apart from the above studies, increased attention has also
been paid to the universality of curvature distribution@8,9#
and avoided crossing distribution@10,11#. In short, the avail-
able studies have indicated that systems which are classically
chaotic, show a wide degree of universality in their quantum
properties. Then, the main purpose of this paper is to answer
the question, what are the other quantum properties of clas-
sically chaotic systems?

In a spin-boson model, which has been taken as ‘‘a physi-
cally quantum chaotic system’’@12#, it was found that the
squeezing and antibunching effects disappear in the regime
of classically chaotic motions@13#. In this paper we shall
report that such quantum features are also exposed in a
nuclear model when its classical counterpart is fully chaotic.

The nuclear model, known as the three-level Lipkin
model @14#, has been studied in the field of quantum chaos
during recent years@15,16#. The Hamiltonian corresponding
to the boson representation has the form
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after transforming the boson creation and annihilation opera-
tors bj

† , bj to qj and pj with bj
†5AV/2(qj2 ip j ),

bj5AV/2(qj1 ip j ) ( j51,2). Taking e18530, e28548,
k185117,k285189,m185207, andm285164.7, it can be regu-
lar or chaotic according to the choice of the parameterl
@15#: ~a! the system corresponding tol50 is regular;~b! the
system is strongly chaotic whenl reaches 1.

Now we study the antibunching and squeezing effects in
this classically chaotic quantum system. Throughout this
paper, we takeV536 @note: the Hilbert space isM
5(V11)(V12)/25703#.

II. ANTIBUNCHING EFFECT

In quantum optics and laser physics, high-order correla-
tion of the radiation field should be investigated in order to
obtain further information and insight into the characteristics
of resonance fluorescence. Experimentally, this is done using
two detectors to measure the joint probability of detecting a
photon at timet and a subsequent one at timet1t. A usu-
ally measured quantity is the second-order correlation func-
tion

g~2!5
^a†a†aa&

^a†a&2
, ~7!

which is proportional to the joint probability.a† anda are
the creation and annihilation operators of the radiation field,
respectively. Then, the following phenomena are defined.

~i! For g(2).1, the probability of detecting a photon at
t1t is increased after detecting a photon att, and photons
tend to arrive in bunches rather than strictly at random. This
phenomenon is called the positive correlation or bunching
effect.

~ii ! For g(2),1, the probability of detecting a photon at
t1t is decreased after detecting a photon att, and photons
tend to repel each other. This phenomenon is called the nega-
tive correlation or antibunching effect.

~iii ! For g(2)51, the probability of detecting a photon at
t1t does not change after detecting a photon att, and pho-
tons arrive at random. This phenomenon is called the non-
correlation effect.

More details about them are given in Ref.@17#.
Here we introduce a similar quantityGi
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in the three-level Lipkin model. For convenience in numeri-
cal calculation, we define the function
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Then, we also call it the bunching effect, the noncorrelation
effect, and the antibunching effect forGi

(2).1 (Ci.0),
Gi
(2)51 (Ci50), andGi

(2),1 (Ci,0), respectively. Now
we take the quantityC15^b1

†b1
†b1b1&2^b1
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2 as an ex-

ample.
First, we consider the case where the system is restricted

to the following initial condition: one of the eigenstates of

the Hamiltonian~1!. It is clear thatC1 does not change with
the time. The numerical results are presented in Fig. 1. Fig-
ure 1~a! tells us that forl50, the classically regular case, the
antibunching effect occurs at almost all the initial states~ex-
cept some states, at whichC150 and the noncorrelation ef-
fect appears!. Moreover, with the increase of the parameter
l, as shown in Fig. 1~b!, the number of initial states which
can exhibit the antibunching effect is decreased greatly. Fur-
thermore, whenl51, as shown in Fig. 1~c!, we find that
almost all the initial states produce the bunching effect rather
than the antibunching effect.

Then, in Fig. 2 we show the time evolution ofC1 when
the system is initially in a coherent state@16#

uFc&5expF(
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i
bi
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~ i51,2!, ~10!

whereZi5Zi8/V, Z18520.9, andZ28524.7. It is seen from
Fig. 2~a! that the antibunching effect occurs at all the times
in the classically regular case (l50). However, the anti-
bunching effect disappears gradually with the increase of
l. In particular, we find that in the strongly chaotic case, as
shown in Fig. 2~c!, the antibunching effect disappears almost
entirely @except at the early time, see inset in Fig. 2~c!#.

It has been shown that a regular pattern can be viewed as
a quantum effect of classically Kol’mogorov-Arnol’d-Moser
~KAM ! tori @3,18#. This conclusion is also reflected from

FIG. 1. C1 versus the energy eigenvalueEi of the Hamiltonian
when the system is initially prepared in the eigenstatef i of the
Hamiltonian~every point represents the result at one initial condi-
tion!. ~a! The regular case,l50; ~b! the intermediate case,
l50.2; ~c! the strongly chaotic case,l51.
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Fig. 1. In Fig. 1~a!, since@H (0),b1
†b1#50, the systemH (0)

has two independent conservative quantities, the energy and
C1 . Then, as predicted in Refs.@3,18#, they form a regular
pattern. However, whenl grows from 0, the regular pattern
shown in Fig. 1~a! is distorted. Figure 1~b! shows the inter-
mediate case (l50.2): the points are distributed randomly in
the middle region, while at two bottom sides a regular pat-
tern is still observed. Furthermore, Fig. 1~c! shows that the
irregular region expands to the whole area whenl is close to
1.

III. SQUEEZING EFFECT

Creating quantum states known as squeezed states, which
fulfill the uncertainty relation and give a reduced uncertainty
in the measurement of a particular observable at the expense
of increased uncertainty in the measurement of a second non-
commuting observable, has been an interesting topic for the
past 15 years or so. Interest in such states is stimulated by its
potential application@19# in gravity wave detection, high-
resolution spectroscopy, quantum nondemolition experi-
ments, quantum communications, and low-light-level mi-
croscopy. In order to reduce the effect of quantum
fluctuations, many techniques@20# have been suggested.

Recently, Zyczkowski@21# has analyzed the time evolu-
tion of squeezed states in a quantum kicked rotator model,
which has been taken as a quantum chaotic system. He found
that squeezing influences the shape of quantum revivals ob-
tained in the regime of classically regular motion, but does
not facilitate the diffusion in angular momentum in the re-
gime of classically chaotic motion.

In this paper we investigate the squeezing properties in

the three-level Lipkin model~another quantum chaotic sys-
tem!. For this, we define two Hermitian quadrature operators

Qj5
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2
~bj1bj

†!, Pj5
1

2i
~bj2bj

†!. ~11!

The above operators obey the commutation relation
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Correspondingly, the Heisenberg uncertainty relation is
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2>
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It is convenient to define the functions

F15~DQj !
22
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22
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Then, the quantum fluctuations inQj ~or Pj ) are squeezed if
F1,0 ~or F2,0). In what follows, we take the quantum
fluctuations inQ15

1
2(b1

†1b1) as an example.
Figure 3 presents the numerical results when the system is

initially prepared in one of the eigenstates of the Hamiltonian
~1!. It can be seen from Fig. 3~a! that for l50, the regular
case, the quantum fluctuations inQ1 can be squeezed at
some initial states. Then, whenl50.2, the intermediate
case, we find from Fig. 3~b! that the number of the initial
states, which can produce reduced quantum fluctuations, is

FIG. 2. The time evolution ofC1 when the system is initially
prepared in a coherent state.~a! The regular case,l50; ~b! the
intermediate case,l50.2; ~c! the strongly chaotic case,l51.

FIG. 3. F1 versus the energy eigenvalueEi when the system is
initially prepared in the eigenstatef i of the Hamiltonian.~a! The
regular case,l50; ~b! the intermediate case,l50.2; ~c! the
strongly chaotic case,l51.
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decreased. Especially, whenl51, the classically chaotic
case, as shown in Fig. 3~c!, only three states can produce the
squeezing effect.

Finally, we have examined the case where the system is
initially prepared in a coherent state given by Eqs.~10!. The
numerical results have shown that the squeezing effect oc-
curs in the regime of classically regular motion, but disap-
pears in the regime of classically chaotic motion. It should be
mentioned here that in the classically chaotic case, we
have also examined the quantum fluctuations in
P15 1/2i (b12b1

†), but they cannot be squeezed.

IV. CONCLUSIONS

In this paper we have studied the time evolution of the
squeezing and antibunching effects in a three-level Lipkin

model~a quantum chaotic system!. The above numerical ex-
periments have shown that the two effects occur in the re-
gime of classically regular motion, but disappear in the re-
gime of classically chaotic motion. This conclusion is similar
to that@13# obtained in a spin-boson model~another quantum
chaotic system!. Is it universal in all quantum chaotic sys-
tems? We cannot give an answer. However, as far as the two
models we have investigated are concerned, the answer
seems likely to be yes.

Analytical explanation of the physical origin would be
interesting and we plan to study this further.
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